Differential interactions between Notch and ID factors control neurogenesis by modulating Hes factor autoregulation
نویسندگان
چکیده
During embryonic and adult neurogenesis, neural stem cells (NSCs) generate the correct number and types of neurons in a temporospatial fashion. Control of NSC activity and fate is crucial for brain formation and homeostasis. Neurogenesis in the embryonic and adult brain differ considerably, but Notch signaling and inhibitor of DNA-binding (ID) factors are pivotal in both. Notch and ID factors regulate NSC maintenance; however, it has been difficult to evaluate how these pathways potentially interact. Here, we combined mathematical modeling with analysis of single-cell transcriptomic data to elucidate unforeseen interactions between the Notch and ID factor pathways. During brain development, Notch signaling dominates and directly regulates Id4 expression, preventing other ID factors from inducing NSC quiescence. Conversely, during adult neurogenesis, Notch signaling and Id2/3 regulate neurogenesis in a complementary manner and ID factors can induce NSC maintenance and quiescence in the absence of Notch. Our analyses unveil key molecular interactions underlying NSC maintenance and mechanistic differences between embryonic and adult neurogenesis. Similar Notch and ID factor interactions may be crucial in other stem cell systems.
منابع مشابه
SoxB1 transcription factors and Notch signaling use distinct mechanisms to regulate proneural gene function and neural progenitor differentiation.
The preservation of a pool of neural precursors is a prerequisite for proper establishment and maintenance of a functional central nervous system (CNS). Both Notch signaling and SoxB1 transcription factors have been ascribed key roles during this process, but whether these factors use common or distinct mechanisms to control progenitor maintenance is unsettled. Here, we report that the capacity...
متن کاملPrdm Proto-Oncogene Transcription Factor Family Expression and Interaction with the Notch-Hes Pathway in Mouse Neurogenesis
BACKGROUND Establishment and maintenance of a functional central nervous system (CNS) requires a highly orchestrated process of neural progenitor cell proliferation, cell cycle exit, and differentiation. An evolutionary conserved program consisting of Notch signalling mediated by basic Helix-Loop-Helix (bHLH) transcription factor activity is necessary for both the maintenance of neural progenit...
متن کاملActivated Notch1 Target Genes during Embryonic Cell Differentiation Depend on the Cellular Context and Include Lineage Determinants and Inhibitors
BACKGROUND Notch receptor signaling controls developmental cell fates in a cell-context dependent manner. Although Notch signaling directly regulates transcription via the RBP-J/CSL DNA binding protein, little is known about the target genes that are directly activated by Notch in the respective tissues. METHODOLOGY/PRINCIPAL FINDINGS To analyze how Notch signaling mediates its context depend...
متن کاملDelta–Notch—and then? Protein interactions and proposed modes of repression by Hes and Hey bHLH factors
Hes and Hey genes are the mammalian counterparts of the Hairy and Enhancer-of-split type of genes in Drosophila and they represent the primary targets of the Delta-Notch signaling pathway. Hairy-related factors control multiple steps of embryonic development and misregulation is associated with various defects. Hes and Hey genes (also called Hesr, Chf, Hrt, Herp or gridlock) encode transcriptio...
متن کاملCross-talk between the Notch and TGF-β signaling pathways mediated by interaction of the Notch intracellular domain with Smad3
The Notch and transforming growth factor-beta (TGF-beta) signaling pathways play critical roles in the control of cell fate during metazoan development. However, mechanisms of cross-talk and signal integration between the two systems are unknown. Here, we demonstrate a functional synergism between Notch and TGF-beta signaling in the regulation of Hes-1, a direct target of the Notch pathway. Act...
متن کامل